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On March 20, 2004, the security incident response team at the National Center for Supercomputing Applications (NCSA) at the University of Illinois received an automated alert indicating that a particular NCSA machine was making an atypical number of outbound connections to external hosts. Often, when something like this happened in the past, it was because a machine had been infected with a worm or become part of a botnet. Naturally, the team investigated the anomaly, and they found that unauthorized ports were open. By scanning the machine and reviewing their network flows, they found that the host was running a backdoor SSH client granting remote access to an unauthorized user. Worse yet, a subsequent scan of the network revealed that other machines had the same strange port open and were also compromised. Little did they realize that this was only the very smallest tip of the iceberg.

Rather quickly, it was discovered that the attacker, who later started identifying himself as “Stakkato,” spread his attacks across much more than the NCSA network. He exploited a number of specific vulnerabilities across many of the TeraGrid sites. The TeraGrid was at the time the world’s largest, most comprehensive distributed computing infrastructure for open scientific research, with high-performance computing resources spread across 11 institutions. While the attacks were expanding to encompass more and more institutions, they were also escalating in frequency. Because the attacker installed Trojaned SSH daemons on many infected machines, he was able to compromise accounts faster than they could be closed or have their passwords changed. This problem was exacerbated by the fact that many of the TeraGrid resources shared authentication credentials, as a typical user could run jobs on any of the TeraGrid supercomputers. Some of the sites were at times just trying to keep their heads above water to stay on top of this problem; eventually, all users were forced to change their passwords at these sites.

As the scope of the problem grew, even beyond TeraGrid, the FBI was brought in on the matter. A few key institutions became the points of contact between the FBI and the many other institutions involved with the case (which was named Major Case 216 by the FBI). Before the investigation was finally complete, the attacks had spanned 19 months and thousands of sites, including high-security military sites and federal research laboratories, university sites, private sector sites, and machines owned by individuals, both in the U.S. and in Europe. It was finally tracked back to a teenager in Sweden after whose apprehension the attacks suddenly stopped (Nixon, 2006).

Lessons Learned

We learned a great deal as one of the victim sites in this experience. First, not only can attacks be very large and sustained, but such attacks can be perpetrated by a single individual. In fact, if your organization is the target of a focused digital intrusion—not just worms or script-kiddies collecting bots—it is likely that your organization is just one of many involved in the same attack. Understanding the specific attack that we experienced required a very broad picture of the incident and the cooperation and collaboration of many individuals at many different institutions. Achieving this collaboration and establishing trust were among the main challenges of the endeavor.

It was not uncommon for a large site to invest thousands of man-hours on handling this incident. One organization might find compromised hosts from hundreds of other organizations. When our incident response team contacted the other incident responders and system administrators, they gave them details on the compromised machines and offered our help with the investigations. Of course, the responses ran the gamut, from people completely unwilling even to acknowledge what was told to them to people openly asking for help and readily sharing data. However, most people were reluctant to cooperate too much. Usually they would only answer questions as to whether or not a particular machine had also attacked them, or perhaps would share high-level network data, like network flows, with our team. Nevertheless, even the limited traffic data we were able to obtain helped us better understand the scope and overall structure of the attack.

Reasons for the reluctance included legal issues, privacy concerns, concerns about leaking sensitive information, and a general inability to establish trust and secure communication channels. In fact, most communication was an ad hoc mixture consisting primarily of phone calls and PGP-encrypted e-mails. Luckily, there were already existing relationships with several other victim organizations through TeraGrid, Department of Energy (DOE) contacts, and contacts at other universities. The FBI also served as an intermediary in some places. That collaboration between the FBI and a small subset of the organizations involved in the attack was absolutely necessary to the traceback and eventual apprehension of the attacker. However, there is no doubt that efficiency could have been greatly improved had we overcome many more of the issues involved in sharing among the victims the logs relevant to the attack.

Why we need better solutions to log anonymization

The Importance of Data Sharing
The case above illustrates a specific scenario in which log sharing and the difficulties associated with it were very important. However, the need for collaboration and sharing of network traces and computer logs is important to various communities for different purposes, including collaborative security, research, and education, among others. Industry is interested in sharing logs for multiple reasons. In general, corporations are interested in overall trends and activity on the Internet, and consequently, many subscribe and contribute to organizations like the Internet Storm Center and DShield. However, interest in more focused log sharing has also grown for industry; industrial entities were involved in FBI Major Case 216. That coordinated attack hit several companies as it crossed organizational and national boundaries. To understand an attack and get the big picture, companies need to collaborate and share information; otherwise they remain out of the loop. Unfortunately, without mechanisms and procedures in place for safe sharing of narrowly focused data of that level of detail, many companies choose to remain in the dark.

While the investigation of specific attacks targeted at the infrastructure supporting researchers is of concern to them—Major Case 216 hit many research labs and universities—the researchers themselves do not share the log data in those cases. It is the incident response team or system administrators at their labs who respond, and those people’s motivations are similar to those of industry described above. However, researchers often do share logs and network traces for another purpose and on a much larger scale. Security researchers frequently need large data sets to run experiments. For example, those working on new intrusion detection systems and algorithms need to test their tools against real network traces for evaluation of false positive and negative rates. The network measurement community also needs large and diverse sets of network traces to evaluate the impact of changes in networking protocols. Other computer scientists have used web server logs to evaluate the effectiveness of different caching strategies on performance. The list of applications goes on and on.

While researchers can sometimes get away with generating data sets in-house, these are often not very representative samples. The data simply lack diversity because they were collected at a single vantage point. In addition to difficulties in generating diverse data, it is difficult to generate significant amounts of data, unless they are synthetically generated. While synthetic data are obviously useless for investigation of a specific intrusion for incident response, they can still be useful for some types of research. Unfortunately, they are not useful for all research. For example, even the best synthetic data sets for security research have been found to be problematic when intrusion detection systems are being evaluated (McHugh, 2000). Therefore, it is often the case that real data must be shared to accumulate the necessarily large and diverse data sets for computer science research. In fact, new repositories have been set up specifically to allow such sharing (e.g., the PREDICT repository
), though not without difficulties.

Log sharing has also become important to good pedagogy, and educators and those creating educational materials require logs and network traces to be shared. Professors want logs to create meaningful student projects. Institutions like SANS that train security professionals need logs and data for their classes focused on effective log analysis. Book publishers often need them for CD exercises they provide as companions to books. In all these cases, real log data are much more meaningful and desirable to students.

The importance of this kind of sharing has caught the government’s attention, including that of the Department of Homeland Security, which has established Information Sharing and Analysis Centers (ISAC) to facilitate the storage and sharing of information about security threats (Slagell & Yurcik, 2005). Further, the importance of log sharing has been recognized in the National Strategy to Secure Cyberspace (NSSC), which explicitly lists sharing as one of its highest priorities—including data sharing within the government, within industry sectors, and between the government and industry. In fact, of the eight action items identified in the NSSC report, three are directly related to log data sharing: Item 2, “Provide for the development of tactical and strategic analysis of cyber attacks and vulnerability assessments”; Item 3, “Encourage the development of a private sector capability to share a synoptic view of the health of cyberspace”; and Item 8, “Improve and enhance public/private information sharing involving cyber-attacks, threats, and vulnerabilities.”

The Importance of Data Sanitization
While all parties—educators, industry, government, and researchers—agree that we need to encourage sharing of computer and network logs for different uses, such sharing is still impeded for various reasons (Slagell & Yurcik, 2005). Chief among these reasons is the fact that data are often very sensitive. Logs and network traces can easily identify network topologies, services running, and the security architecture of the networks or machines they describe. At the very least, this makes reconnaissance easier for would-be attackers. At worst, it can reveal specific vulnerabilities and points of entry. Naturally, system administrators and network operators are thus reluctant to share such data without strong motivation.

There are also privacy issues about which network operators, particularly at Internet service providers, are concerned. Their customers have an expectation of privacy, often spelled out specifically in a corporate privacy policy, and the logs describe behaviors of those customers. It is thus in the providers’ economic interest to consider the implications of sharing their logs, even if they have no official privacy policy. Furthermore, their customers may be afforded legal protection under several laws, even if there is no protection in the privacy policy (Sicker, Ohm, & Grunwald, 2007).

For effective data sharing, it is clear that we need to address the privacy concerns of data owners. In recent years, such concerns have been tackled through use of anonymization (also called data sanitization). The premise is simple: remove or modify information from the data set that could violate privacy. For instance, if a hospital plans to release medical logs, it would remove or modify sensitive information such as patient names and addresses. For network logs, the policy could be to obscure individual addresses.

Unfortunately, even if companies think they protect the privacy of their customers through sanitization mechanisms and are careful about meeting legal requirements, identifiable data may be released and lead to major embarrassment. Both AOL™ and Netflix™ have recently exposed themselves to such embarrassment by releasing large data sets they believed to be sufficiently anonymized, but were later found to be insufficiently protected. AOL™ released logs from their search engine (Hafner, 2006), and Netflix™ released information on user movie ratings and profiles (Narayanan & Shmatikov, 2006). One can be sure that both companies will be more hesitant to share such data in the future, as might other corporations that have taken notice of these events.

Consequently, there is a pressing need for research into anonymization mechanisms and the development of better anonymization tools. FBI Major Case 216 has given us the motivation to share data; the AOL™ and Netflix™ debacles have sounded a warning on the problems of sharing data. For collaborative security to move into the future, a solution must be reached between the extremes of all or nothing. It is this question of how to balance the needs of the different parties that we are tackling.

Log Anonymization Tools

When we began our research into log anonymization and created our position paper a few years ago (Slagell & Yurcik, 2005), the situation was very different. As we argued then, there were few tools performing anything beyond the most rudimentary forms of log anonymization. Tools were one-size-fits-all, with just a few options on how to do the anonymization. Log anonymizers would usually handle just one type of log and often anonymize only one field, typically IP addresses. Furthermore, there were only one or two types of algorithms for anonymization available for that one field.

There were several problems. First, one usually had to have a different anonymization tool for each type of log, even if it was just for different formats of the same kind of data. For many types of logs, there were no tools whatsoever available to anonymize them. That led to more substandard one-off tools that had few options and worked for only very specific data formats. Thus, people created a new tool for every anonymization task, rather than use one tool and change the policy or configuration. Last, the dearth of anonymization options meant that there was essentially only one level at which a log could be anonymized. However, depending upon the level of trust between two parties, the data owner might want to anonymize logs more or less. At the time, there was no granularity of choice, and anonymization tended to be superficial. Therefore, the tools available then were usually useful just for sharing with parties that were highly trusted.

Much has changed since then, and many researchers have answered the call we made for new log anonymization frameworks. In addition to FLAIM (Slagell, Lakkaraju, & Luo, 2006), which is the anonymization framework we developed, several other anonymization tools have since been developed (Koukis, Antonatos, Antoniades, Markatos, & Trimintzios, 2006; Pang & Paxson, 2003; Pang, Allman,  Paxson, & Lee, 2006; Ramaswamy & Wolf, 2007; Slagell, Li, & Luo, 2005; Slagell, Lakkaraju, & Luo, 2006; Yurcik, Woolam, Hellings, Khan, & Thuraisingham, 2007; Zhang & Li, 2006; Zhang, Wang, & Li, 2007). While most of them are still focused on network logs (FLAIM handles both network and system logs), many can anonymize almost any header field in a network log, and most of them support more than one type of basic anonymization primitive. So network owners now often have the raw tools necessary to sanitize their logs, but this solves only half the problem. For those tools are useless unless you know how to use them effectively.

Creating Effective Anonymization Policies

One of the major challenges now is not the creation of good log anonymization tools, but the creation of an anonymization policy to meet the needs of a given situation. At a minimum, there are always two parties involved in log sharing: the data owner, who typically is the person who generated the data, and the data analyst, who wants to use the data. The data analyst could be a researcher needing the data for experiments, an educator wanting to use them for a class project, or even a security incident investigator wanting details on a specific attack. Additionally, there is often a third party, the person(s) who are the object of the data set. Computer and network logs often describe behaviors of individual users, and they have a vested interest in this hypothetical log sharing as well. 
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Figure 1: The Data Anonymization Tradeoff.

Unfortunately, these parties do not always have interests that are aligned. The data owner is often concerned with security. The logs may contain sensitive information about their network, assets, or security posture. Therefore, they do not want the logs to get into the hands of an adversary, and they know they lose control after they share the data. The person analyzing the data wants them to be as accurate as possible. Alterations of the data can change the results of any studies on the data. This is even more problematic if one does not even know how the data were altered through anonymization. Lastly, if the data are about the behaviors of specific people, they are likely to be interested in protecting their privacy. When they are customers of the data owner, their concerns may align with the data owner. However, that is not always the case, and if the data are not sensitive to the owner, the owner may lose the incentive to protect them adequately. Creating an anonymization policy is all about balancing the conflicting needs of these different actors.

Fundamentally, the problem comes down to what we have referred to as the utility vs. security trade-off in anonymizing logs (Slagell & Yurcik, 2005). The idea is rather straightforward. As you increase security or privacy requirements on the data, more anonymization must be performed. That means more information loss, which can never result in more utility to the one analyzing the data. At best, it can be a neutral change. So if one were to plot a function of information loss vs. utility—for any measure of utility—it would be a monotonically non-increasing function. Of course, it isn’t quite that simple, because information loss is not one-dimensional, and neither is any measure of security. At best, we can create partially ordered sets where one state is more secure than another, but not necessarily comparable to another state. For example, anonymization policy A may protect against adversary X, but not Y. Anonymization policy B may protect against adversary Y, but not X. In that case, one cannot say that either A or B is a more secure policy, unless one adversary’s capabilities are a strict subset of the other. Furthermore, the information loss could be equal, but simply affect two different fields in the policies. All of this, plus the fact that there could be infinitely many kinds of valid utility measurement, make finding an optimal anonymization policy very challenging; it will never be as simple as sliding a rule to choose between two one-dimensional metrics in some sort of zero-sum game.

In the past few years we have learned that there is much more work still to be done in this area of research. While we have found solutions to some problems, we have created even more questions and discovered new challenges. The purpose of this chapter is to lay out the greatest open problems in the area of log anonymization and describe what we have learned in our initial attempts at solving these problems.

Our Vision

Current anonymization techniques usually assume a static anonymization process, one in which the data owner “pushes” anonymized data to clients. Figure 2 illustrates this process. The key steps are:

· Data owner chooses logs to anonymize.

· Data owner evaluates needs of a single or specific set of analysts.

· Data owner creates a specific anonymization tool/technique for this data analyst’s needs.
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Figure 2: Static Anonymization Process.

The data owner is the primary agent in this static process; he or she is the one who decides which logs to anonymize and how to anonymize them. However, a static process provides only minimal interaction between the data analyst and the data owner. 

The anonymization engine is tailored towards the analyst and data. It is usually created specifically for this sharing need; thus, it is not flexible and cannot be extended to other data sets. 

While there have been significant results, the static anonymization process is inflexible and slow to implement. FBI Major Case 216 was a scenario in which data analysts needed quick access to a variety of logs anonymized at different levels for different organizations. The critical components missing from the static model of the anonymization process are

· Multiple clients,

· A variety of log types, and

· Multiple levels of anonymization.

To capture those aspects, we envision a dynamic anonymization process in which data owners and analysts dynamically interact. Figure 3 highlights this process. The key steps are:

1. Data analyst requests data from data owner.

2. Data owner evaluates the request, considering

a. Relationship of the analyst to the data owner,

b. Trustworthiness of the analyst, and

c. What logs the analyst requires. 

3. Based on those considerations, the data owner determines whether an anonymization policy exists that can meet the needs of both parties and generates one that minimally anonymizes the data, if such a policy exists. 

4. The anonymization policy tailored to this request is applied to the relevant data. 
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Figure 3: A vision of dynamic log anonymization.

The key aspect of this approach is the dynamic anonymization policy generation by the data owner predicated on the needs of an arbitrary data analyst.

Challenges with a Model of a Dynamic Anonymization Process
To fully implement a dynamic anonymization system, we have to address many questions:

· How do we measure the utility of a log for a client?

· How can we describe the impact of anonymization on a log?

· How do we thwart de-anonymization and linking with other sources?

While there has been significant progress in this area of research since our position paper in 2005 (Slagell & Yurcik, 2005), there are still many challenges to effective sanitization of network traces and other computer log formats. These challenges can be categorized as either practical (engineering) or research challenges. 

In terms of research challenges, the main questions to be answered are 

· How do we measure the utility of a log, and

· How can de-anonymization be prevented?

Without a solid understanding of these fundamental issues, efficient data sharing will never take place. The practical challenges are

· To develop a production-quality, flexible, multi-log, multi-field, multi-level anonymization tool, and

· To negotiate anonymization policies automatically on the fly.

In this section, we discuss these four main challenges and describe the progress that has been made towards addressing them. 

Practical Challenges

Better Tools

Log anonymization tools have improved in many ways. For example, most newer anonymization tools support more than one anonymization algorithm. Also, almost all of them support anonymization of several fields. Both FLAIM (Slagell et al., 2006) and AnonTool (Koukis, D., Antonatos, S., Antoniades, D., Markatos, E., & Trimintzios, P, 2006) are very flexible network log anonymization tools, although they make different trade-offs among usability, flexibility, and speed. Still, all of the log anonymization tools are deficient in some way.

One of the major drawbacks to all of these tools is that they are research prototypes and not commercial-quality software products. There is no official support, and after their supporting grants expire, such tools tend to fall into disuse. They are no longer updated to fix bugs, address newer log formats, or add requested features. While some, like FLAIM, are modular and allow expansion to handle new types of data (even more than network logs), none of these tools come with developer documentation to help those who would improve them. Few even have good documentation for users, let alone developers. Third parties have expanded FLAIM and created additional modules (Bezzi & Kounine, 2008), but this would have been difficult without the help they received from the original developers. A strong commercial product would not only have good documentation for developers, but ideally would have a toolkit that would allow modules for new data formats to be quickly developed and new anonymization algorithms to be easily added.
Furthermore, being research prototypes, those tools tend not to be optimized and suitable for use in a production environment. Most of the anonymizers cannot keep up with high data rates at line speed, and the ones that do sacrifice generality for speed. None of the current anonymization tools make good use of multi-core technology by parallelizing anonymization operations. While not all kinds of anonymization could be done in parallel (because of the special relationships between fields and records), in principle much of it could be parallelized to realize significant performance gains.

A problem that is more fundamental than the lack of optimizations and additional features (such as support for more types of data) is the lack of standards. First, it would be of great benefit to researchers to have a standard meta data language to describe how a log or network trace was anonymized. If they do not know how the data were anonymized, how can they know what effect that anonymization may have on their analysis? Second, there are no standard formats for a policy language, and the existing policy languages are limited in many ways. For example, while FLAIM’s XML policy language is perhaps the most human-readable and flexible, it still lacks valuable features, such as a way to specify conditionals. One must anonymize all instances of a particular field with the same algorithm, regardless of any semantic information in that field. AnonTool addresses that problem in a fashion, but at the cost of creating a very opaque mechanism to specify how anonymization will be performed. A standard here would certainly make it simpler for one to use different anonymization tools to suit specific needs.

Negotiating Policies

The ability to measure utility and understand de-anonymization is really a prerequisite to solving the problem of creating sound anonymization policies. Now that there is actual choice, with the current-generation tools, in how one anonymizes a network trace or log, the issue remains of how to do so intelligently. As we have argued, this means balancing the requirements of three actors: the data provider, the data analyst, and the user (the one about whose behavior the data speak). The provider is interested mostly in security, the data analyst in some sort of measurement of utility, and the user in security as far as it concerns his or her privacy. The research questions we discuss in the sections that follow are about understanding the requirements of these parties, and are driven by the need to create anonymization policies that work for all parties.

As we come to better understand these utility and security requirements, this process of balancing different parties’ requirements can be automated so that data providers do not simply have to guess whether or not anonymization has been sufficient. We have taken the first step towards this goal (King, 2008) with the creation of a predicate logic to describe the requirements and a mapping between a taxonomy of de-anonymization attacks and the predicate logic. This has been possible in part because we developed a taxonomy based upon attack preconditions. Thus, there is a natural mapping from the taxonomy to statements about what kinds of information must be removed, and these can be expressed as simple logical syllogisms in conjunctive normal form. For example, one requirement in plain English may be that IP addresses must be anonymized so that pseudonyms are not consistent and the granularity of timestamps must be at the minute level, or IP addresses must be completely annihilated. Statements such as those are a natural fit for a first-order predicate logic.

We can also create statements in this logic about what cannot be anonymized. Any utility requirement is really a statement about what cannot be anonymized. Therefore, the complete requirements of all parties in regard to their anonymization constraints can be expressed as a logical statement, and the variables are those things we can specify in a policy. By prototyping this predicate logic in Prolog, we have been able to load information about what makes a well-formed policy, a set of statements reflecting policy constraints, and a policy. Then Prolog can tell us whether or not the policy is well-formed and in compliance with the requirements. Furthermore, we can query it to ask whether or not a policy meeting all the requirements even exists, and, with a simple enhancement, it can even generate a set of conditions for such a policy. Software could be created to take the set of values that makes the statement true and translate it into an explicit policy for software like FLAIM (Slagell et al., 2006).
Of course, a great deal of work needs to be done to reach the goal of automatic negotiation of policies. First, we have just created a research proof of concept implemented in Prolog. The bulk of the work was in creating the first-order predicate logic itself. A full implementation would have an interface that allows one to select an adversary to protect against (or part of the de-anonymization attack taxonomy) along with a set of utility constraints, translate that into the predicate logic, generate a set of minimally complex policies to choose from, and translate the user-chosen one into an actual XML policy for a tool like FLAIM. It would also allow policies for anonymization tools to be uploaded and validated against a set of constraints.

Another area for researchers to address is how we can negotiate policies more quickly. The full problem of finding policies that make the predicate true in this logic can be shown to be NP-hard. We have used some heuristics to scope the search and removed variables and statements in the predicate logic where appropriate to speed up the process, but this basic approach gets very complex as the policy language becomes complex. Specifically, the problem grows exponentially with respect to the number of fields and anonymization algorithms. Work needs to be done either to take an entirely different approach to negotiating these constraints that does not use a predicate logic, or to create heuristics that may not always lead to a minimal solution, but to a solution within less time.

One of the strengths of our approach to measuring the security of an anonymization policy is that our attack taxonomy (discussed in more detail below), and hence our adversarial model, map so well into the predicate logic. However, utility requirements must be manually specified in this logic. One reason is that the research on measuring utility is far less complete, and it is specific to the type of analysis to be done with the data. The security of a policy does not depend upon what is to be done with the data, only upon potential adversaries, and therefore is more universal. As people start to look at measuring utility for different applications, research should be done to find ways to map different utility levels or requirements into specific statements in the predicate logic.

Adversarial models may adapt, and new attacks may be discovered. With our approach, as new attacks are discovered, they must be put into the taxonomy, and a mapping must be manually created to connect it to the adversarial model. It would be far better if one could just map directly from the adversarial model into the predicate logic. The adversarial model would thus be much less likely to need constant updates than the taxonomy of known attacks. Furthermore, it would be fruitful to look at how one can map from other adversarial models into constraints specified in the predicate logic. We even envision better adversarial models that capture probabilistic statements. Ideally, in the future, we would want to specify that we need a certain probabilistic level of assurance that an adversary cannot de-anonymize something. That would require modification not only of the adversarial model, but potentially of the predicate logic as well.

Research Challenges

Measuring Utility
Critical to development of any anonymization policy is an understanding of the needs of the person(s) analyzing the data. If not done properly, anonymization can affect the result of experiments and make the data useless. Therefore, it is imperative to understand the constraints of what cannot be anonymized as imposed by the data analyst.

Unfortunately, there can be no single metric of utility. Depending upon the users and the tasks they wish to perform with the data, different fields within the data are of value. Furthermore, the same fields may need to be anonymized more or less. For example, a network researcher may need the TCP flags and TTL to remain untouched and the subnet structure to remain intact. Someone testing an intrusion detection system may not care about any of that and may even be satisfied with any random permutation of IP addresses. On the other hand, an incident response team may want to get logs from another organization that was attacked and to investigate what the attacker did on the other network. At a minimum, they cannot anonymize the attacker’s IP address(es).

Very little has been done to examine how anonymization affects utility. We performed the first extensive investigation with the development of the IDS Utility Metric (Lakkaraju & Slagell, 2008), although we must note that the basic idea of analyzing the effect of anonymization on intrusion detection systems (IDSes) was presented earlier (Koukis, D., Antonatos, S., Antoniades, D., Markatos, E., & Trimintzios, P, 2006). The main idea of this our work was to investigate changes in false positive and negative rates as anonymization policies were changed, with the purpose of analyzing the effect that anonymization would have on collaborative intrusion detection and incident response. We tested hundreds of policies against the MIT Lincoln Labs DARPA data set (McHugh, 2000) and looked at the differentials of these metrics to determine what kinds of policies had more or less of an effect.

While that work was progress towards the goal of understanding how anonymization affects utility, it still just scratched the surface. Even while considering the task of intrusion detection, we varied only one field at a time. Initial experiments with more complex policies demonstrated that the effects of multi-field anonymization could not simply be inferred from data on single-field anonymization policies. Furthermore, we did not examine the effect of varying the type of intrusion detection system (anomaly vs. signature-based) or the signature set on the measure of utility.

Most importantly, studies to date have looked only at the effect of anonymization on just one type of analysis for one type of data: network traces. Even if we only consider network traces, we need to consider utility for the network measurement, security visualization, network forensics, and many other communities. Also, many other types of data are anonymized: firewall logs, network flows, process accounting logs, file system logs, web server logs, authentication logs, and more. Similar attention needs to be given to those other types of data, so that anonymization policies can be constructed that do not unduly diminish the data’s utility for the communities that require those logs.

Understanding De-anonymization

In recent years, several new attacks have been created to de-anonymize network traces and a couple other log types (Bethencourt, Franklin, & Vernon, 2005; Coull, Wright, Monrose, Collins, & Reiter, 2007; Coull, Collins, Wright, Monrose, & Reiter, 2007; Koukis, Antonatos, & Anagnostakis, 2006; Kohno, Broido, & Claffy, 2005; Ribero, Chen, Miklau, & Towsley, 2008). In fact, creating a new one-off de-anonymization attack seems to be the easiest and most popular way to get a result published in this field. What is harder, and has had very little effort put into it, is finding ways to protect against such attacks and create adversarial models that expand our understanding of these attacks on a more theoretical level. 

As a first step towards understanding how anonymization can be attacked, we have worked to create a taxonomy of these attacks (King, 2008). Aside from one paper that listed 4 non-mutually exclusive categories of attacks (Pang & Paxson, 2003), ours is the only work of which we are aware that tries to relate common de-anonymization attacks. We decided to base our taxonomy upon prerequisite conditions for an attack, as that would most naturally lend itself to mapping elements of the taxonomy to specific preventative measures that could be taken. Our approach was to take all the currently known attacks (about two dozen of them) and try to relate them to each other by means of common preconditions. Once we did that, we were able to construct a tree that grouped and generalized the current attacks. In that way, we have taken a very pragmatic approach that captures known attacks well, but also allows for expansion to include new attacks as they are discovered. The taxonomic tree simply grows in depth as the corresponding taxonomy becomes finer. More research needs to be done in this direction, and it will take time to validate our approach and decide whether the taxonomy is ultimately useful.
 There have also been two approaches to creating formal adversarial models to better understand the threats posed by de-anonymization attacks. There have been very pragmatic approaches such as ours, which reverse-engineers our taxonomy into a set of adversarial capabilities and means (King, 2008), and there have been more theoretical approaches, such as that developed by Coull et al. (Coull, Wright, Keromytis, Monrose, & Reiter, 2008). Coull et al. have focused on a particular type of attack and modeled adversaries as a process that matches distributions of anonymized and unanonymized values. Using entropy metrics, they can thus find fields and records that are vulnerable to de-anonymization. This covers a large class of inference attacks, and can potentially be used to find new specific attacks. However, it cannot address a large range of attacks—for example, anything active rather than passive—and it does not address compositions of attacks. Its real strength is that it can expose sensitive fields and records that may be insufficiently anonymized and provide hard guarantees for this one type of attack primitive.

The other approach in the literature is ours, which is based in part upon the adversarial model of Avoine (Avoine, 2005). He modeled RFID identification attacks by creating a composable framework of means and capabilities. We did a similar thing, creating a set of means and capabilities that are necessary to perpetrate the attacks in our taxonomy. That made it rather straightforward to map adversaries to parts of the taxonomy, and vice versa. However, the adversarial model is even more generic and can incorporate new attacks as discovered. The main purpose of our taxonomy, was to allow translation between questions about whether or not a policy can stop a given attack to questions about whether or not it can stop a given adversary. That aim was, of course, predicated upon the assumption that our taxonomy is complete, something that has not been proven. This is one of the limitations of our very pragmatic approach: although the model and taxonomy are expandable, the approach is restricted to a universe of attacks that have already been discovered, whereas Coull et al.’s approach can potentially discover new attacks of a limited class.

Clearly, a lot of work remains to be done in the area of understanding de-anonymization and information leakage. First, we would like to see a more powerful adversarial model that has the benefits of both approaches. That is, it can capture all of the current attacks, and it can potentially lead to discovery of new attacks. Another major breakthrough in this area of research would be to detect active attacks before releasing data. Many attacks are what we call data injection attacks, ones that send probes that will be recorded and later released in the anonymized data set. By recognizing these injected probes, it is often possible to mount a sort of known-plaintext attack. Many of the specific attacks already described may be simple enough to detect, but in general they are not. The attack essentially creates a covert channel, and covert channels are very difficult to detect in large data sets. In addition to investigating ways to detect these sorts of attacks, researchers should look at ways to prevent them. Since almost any field can be used for the covert channel, often one would have to anonymize almost all the fields to stop such an attack. However, there are alternative measures to anonymization as well. Changing how logs are released can affect attacks. For example, sampling of the data means that the attacker cannot depend on the assumption that his or her probe is in the data. Playing with the release schedule and spacing out releases can make data injection attacks too slow. Changing keys every time data are released makes mappings inconsistent between data sets and can also thwart an attacker. All of these solutions should be considered along with anonymization and investigated further.
Conclusions

FBI Major Case 216 is a portent of the future. As computers and devices become ever more connected through the Internet, the scope and complexity of cyber attacks will continue to increase unabated. To address this problem, those defending our computer systems must come together to share information, knowledge, and resources. However, at this time there are no effective, secure, and flexible ways of sharing between organizations even the most basic of data sets: computer and network logs. 

Our vision is to develop a dynamic anonymization process in which clients negotiate with data owners to make appropriate tradeoffs between security, privacy, and utility. The potential benefits are tremendous, and would affect researchers, security engineers, and educators everywhere. The steps towards fulfilling this vision are taking place now; however, there are numerous important hurdles that must be overcome. First, we contend that there are three major research directions that must continue to be pursued for our vision to be realized:

· We must seek a better understanding of the relationship between anonymization and utility for the many different scenarios of sharing logs. 

· We must create adversarial models that not only capture current de-anonymization attacks, but also reveal new ones.

· We must be able to map utility and security constraints from the adversarial models into a system able negotiate anonymization policies.
In addition to these research challenges, we have also noted that there are several engineering challenges to building such a system. Currently, even the best anonymization tools are still research prototypes, and they are not nearly as robust or reliable as they need to be for production use.

We have taken significant steps towards pursuing the challenges. Determining the utility of a log is a difficult endeavor, since utility is very context-dependent; it matters who is using the log, what information they have, and for what purpose they are using it. Instead of calculating an ambiguous and simplistic one-dimensional measure of utility (e.g., a simple entropy-based metric), we focused on measuring the change in utility resulting from anonymization through the use of the IDS Utility Metric. With that approach, we have exhaustively measured the loss in utility from anonymization for most single-field policies applied to network traces towards the task of intrusion detection. But other tasks, other logs, and even more complex policies must be evaluated by similar investigations.
While the research community has given much attention to creating new de-anonymization attacks, less work has actually looked at how to prevent de-anonymization in a proactive manner. Towards that goal, we have developed a taxonomy of de-anonymization attacks as well as created a formal adversarial model to better understand these threats. Like measures of utility, de-anonymization attacks are dependent upon context, and the likelihood of de-anonymization depends upon how the logs are anonymized, how they are released, to whom they are released, and other outside information sources useful to inference attacks. Thus, it is only natural that our formal adversarial model focuses on attack preconditions by identifying the information a particular adversary would need to de-anonymize a particular type of log.

By modeling the preconditions through which de-anonymization takes place, we can identify “safe” anonymization policies. Thus, we have mapped our taxonomy and adversarial model into a predicate logic system that provides us with a means of creating appropriate policies for different situations. By adding to that logic constraints on what cannot be anonymized (i.e., utility constraints), we have taken a major step towards providing automatic policy negotiation.
Finally, a theoretical understanding of the issues surrounding anonymization is worthless without a framework with which one may act upon this understanding. FLAIM (Framework for Log Anonymization and Information Management) is a cutting-edge tool that we developed to realize that new vision of a dynamic anonymization process. Thus, FLAIM provides

· A core anonymization engine with many supported algorithms;
· An extensible, modular I/O system that allows new logs and data formats to leverage existing anonymization algorithms; and
· A powerful XML anonymization policy language that allows policies to be specified at run-time, rather than compile time. 

FLAIM is vital to our vision. Unlike other anonymization tools, which have typically been developed specifically for one type of log or with very rigid anonymization policies, FLAIM is flexible and modular, and we hope that it will play a critical role in realizing our vision of dynamic anonymization.

To be effective, the security community must be able to collaborate efficiently. We have started down the right path with the work we have done to date, and we hope that our vision presented here will guide others and ourselves towards the realization of improved collaborative security. 
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